words
-
min read
RIP rounds

Those RIP Rounds We All Keep Hearing About

One of the things that we keep hearing about here at Alien Gear is G2 Research's RIP Rounds. Customers will mention them, fans ask about them on Facebook and YouTube - and we do listen! - and so on. People wonder if they are good carry rounds and so on.

Contrary to popular belief, "RIP" does not stand for "rest in peace" or "requiescat in pacem" ("rest in peace" in Latin") but rather "Radically Invasive Projectile." These bullets have a novel design that promises to be the ultimate tactical nastiness. Hence, we get questions from people about whether or not this is the 9mm ammo to get.

Just like a number of other bullet designs, some folks wonder if they're some sort of ultimate man-stopper. Are they? Well...we're gonna talk about that.

RIP Rounds: What Are They?

rounds

Before we get into what RIP rounds are not, let's dig into what they are.

The projectile is all-copper, so there's no lead to be found. (Tactical AND environmentally conscious!) Bullet weight for RIP Rounds 9mm load is 92 grains, which gives them some zip (1250 fps for their 9mm ammo) due to the light weight.

The bullet itself is a copper hollow point, with a crowned nose kind of like Winchester hollow points (Black Talon, Ranger, PDX) though obviously with much sharper points. After casting, horizontal cannelures are cut into the projectile, followed by vertical channels cut into the projectile. This leaves a thin web of copper between the vertical spires that are created by machining the projectile.

I actually spoke with the factory guys at SHOT Show. Their bullets are CNC machined for quality control, so - anything else you might think aside - their process is geared around consistency. They aren't making a novelty round for the sake of it; this is serious ammo.

The intended effect is that when the round enters a fleshy target, the spires peel back and break off into trocars. The trocars slow down rapidly, coming to rest at a relatively shallow depth while the core of the bullet keeps going. However, since copper isn't as dense as lead, it doesn't retain energy as well as a solid lead projectile and thus comes to a stop sooner.

In theory, this means that the core of the bullet gets deeper penetration, but the trocars break off and puncture vital structures like organs, veins and arteries and so on. As the philosopher RW Hubbard observed, it sounds nasty and it pretty much is.

But are they up to the hype?